| |
- feature_ranking(score, **kwargs)
- spec(X, **kwargs)
- This function implements the SPEC feature selection
Input
-----
X: {numpy array}, shape (n_samples, n_features)
input data
kwargs: {dictionary}
style: {int}
style == -1, the first feature ranking function, use all eigenvalues
style == 0, the second feature ranking function, use all except the 1st eigenvalue
style >= 2, the third feature ranking function, use the first k except 1st eigenvalue
W: {sparse matrix}, shape (n_samples, n_samples}
input affinity matrix
Output
------
w_fea: {numpy array}, shape (n_features,)
SPEC feature score for each feature
Reference
---------
Zhao, Zheng and Liu, Huan. "Spectral Feature Selection for Supervised and Unsupervised Learning." ICML 2007.
|